Thermal Actuation Based 3-DoF Non-Resonant Microgyroscope Using MetalMUMPs

نویسندگان

  • Rana Iqtidar Shakoor
  • Shafaat Ahmed Bazaz
  • Michael Kraft
  • Yongjun Lai
  • Muhammad Masood Ul Hassan
چکیده

High force, large displacement and low voltage consumption are a primary concern for microgyroscopes. The chevron-shaped thermal actuators are unique in terms of high force generation combined with the large displacements at a low operating voltage in comparison with traditional electrostatic actuators. A Nickel based 3-DoF micromachined gyroscope comprising 2-DoF drive mode and 1-DoF sense mode oscillator utilizing the chevron-shaped thermal actuators is presented here. Analytical derivations and finite element simulations are carried out to predict the performance of the proposed device using the thermo-physical properties of electroplated nickel. The device sensitivity is improved by utilizing the dynamical amplification of the oscillation in 2-DoF drive mode using an active-passive mass configuration. A comprehensive theoretical description, dynamics and mechanical design considerations of the proposed gyroscopes model are discussed in detail. Parametric optimization of gyroscope, its prototype modeling and fabrication using MetalMUMPs has also been investigated. Dynamic transient simulation results predicted that the sense mass of the proposed device achieved a drive displacement of 4.1μm when a sinusoidal voltage of 0.5V is applied at 1.77 kHz exhibiting a mechanical sensitivity of 1.7μm /°/s in vacuum. The wide bandwidth frequency response of the 2-DoF drive mode oscillator consists of two resonant peaks and a flat region of 2.11 kHz between the peaks defining the operational frequency region. The sense mode resonant frequency can lie anywhere within this region and therefore the amplitude of the response is insensitive to structural parameter variations, enhancing device robustness against such variations. The proposed device has a size of 2.2 × 2.6 mm(2), almost one third in comparison with existing M-DoF vibratory gyroscope with an estimated power consumption of 0.26 Watts. These predicted results illustrate that the chevron-shaped thermal actuator has a large voltage-stroke ratio shifting the paradigm in MEMS gyroscope design from the traditional interdigitated comb drive electrostatic actuator. These actuators have low damping compared to electrostatic comb drive actuators which may result in high quality factor microgyroscopes operating at atmospheric pressure.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparative Study on Finite Element Analysis & System Model Extraction for Non-Resonant 3-DoF Microgyroscope

Rana I. Shakoor Pakistan Institute of Engineering & Applied Sciences, Islamabad Pakistan [email protected] Tele: +9251 2207381 Fax: +92 51 2208070 Shafaat A. Bazaz GIK Institute of Engineering Sciences & Technology, Topi, Pakistan [email protected] Y. Lai Queens University, Kingston, ON, Canada, K7L3N6 [email protected] M. M. Hasan Pakistan Institute of Engineering & Applied Sciences, Islama...

متن کامل

Structural design and experimental characterization of torsional micromachined gyroscopes with non-resonant drive mode

This paper reports a novel gimbal-type torsional micromachined gyroscope with a non-resonant actuation scheme. The design concept is based on employing a 2 degrees-of-freedom (2-DOF) drive-mode oscillator comprising a sensing plate suspended inside two gimbals. By utilizing dynamic amplification of torsional oscillations in the drive mode instead of resonance, large oscillation amplitudes of th...

متن کامل

Forced large amplitude periodic vibrations of non-linear Mathieu resonators for microgyroscope applications

This paper describes a comprehensive nonlinear multiphysics model based on the Euler-Bernoulli beam equation that remains valid up to large displacements in the case of electrostatically actuated Mathieu resonators. This purely analytical model takes into account the fringing field effects and is used to track the periodic motions of the sensing parts in resonant microgyroscopes. Several parame...

متن کامل

Six-Degrees-of-Freedom Remote Actuation of Magnetic Microrobots

Existing remotely-actuated microrobots powered by magnetic coils far from the workspace exhibit a maximum of only five-degrees-of-freedom (DOF) actuation, as creation of a driving torque about the magnetization axis is not achievable. This lack of orientation control limits the effectiveness of existing microrobots for precision tasks of object manipulation and orientation for advanced medical,...

متن کامل

Micromanipulation System Design Based on Selective Actuation Mechanisms

The flexure parallel mechanism (FPM) possessing selective actuation (SA) feature can be used as a micromanipulation system. The design of FPMs with the SA characteristic consists of type synthesis of parallel mechanisms possessing the required number of degree of freedom (DOF), geometric arrangement of the structure to obtain the SA and conversion of the kinematic mechanism into the flexure mec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2009